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Abstract— This paper demonstrates the Pole-Zero-Difference
Form of state-space realization for all proper transfer functions,
where all the distinct, real poles, zeros and gain of the transfer
function appear as explicit components in the state space.

I. INTRODUCTION

Transfer functions can be expressed in multiple different
state-space realizations in order to optimize their utility in
different applications. There are several so-called canonical
realizations that appear in the literature. The two most com-
mon, the Observable and Controllable Forms, are expressed
utilizing the coefficients of the transfer functions, ai and bi,
when expressed as polynomials, such as;

Y (s)

U(s)
=

b1s
n−1 + . . . + bn−1s + bn

sn + a1sn−1 + . . . + an−1s + an
(1)

Furthermore, the Diagonal Form can be used when the
denominator can be factorized into distinct poles;

Y (s)

U(s)
=

b1s
n−1 + . . . + bn−1s + bn

(s− p1)(s− p2)...(s− pn)
(2)

Where p1 6= p2 6= ... 6= pn. In order to then construct
the state-space for this form, the partial fractions need to be
found, such that;

Y (s)

U(s)
=

r1
(s− p1)

+
r2

(s− p2)
+ ... +

rn
(s− pn)

(3)

Thus the Diagonal Form state-space can be expressed
using the coefficients ri and poles pi. However, the liter-
ature has no such method to readily express a state-space
realization explicitly using the poles pi, zeros zi and gain k
of the transfer function, i.e. where both the numerator and
denominator have been factorized;

Y (s)

U(s)
=

(s− z1)(s− z2)...(s− zn−1)

(s− p1)(s− p2)...(s− pn)
k (4)

Indeed, the above is true for any number of zeros up to n
(where the original equation would have the additional term
b0s

n in the numerator). This paper presents a new state-space
realization, the Pole-Zero-Difference Form, such that this is
possible. Below follows (II) a problem statement, (III) the
solution for all cases , (IV) proof of the solution, (IV-A)
reference of simple cases, (IV-B) and (IV-C) comparisons
with other canonical forms, and (IV-D) Matlab example.
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II. PROBLEM STATEMENT

Consider the single-input-single-output transfer function
in pole-zero form;

Y (s)

U(s)
=

∏M
i=1(s− zi)∏N
j=1(s− pj)

.k (5)

Where 1 ≤ M ≤ N , and the values of pj and zi
are distinct and unique. We seek to construct a state-space
realization of this function such that the poles pj , zeros zi
and gain k appear explicitly in the matrices of A, B, C and
D, thus;

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(6)

The arbitrary simple case of M = 0 and numerator equals
1 is also considered.

III. OVERVIEW OF SOLUTION

A. The 4 Main Categories

The Pole-Zero-Difference Form is named for the off-
diagonal terms in the A matrix. Realizations in this form
are presented for all proper transfer functions. However, the
algebra becomes incredibly expansive to prove in the general
case. As such, this paper will explore the solution across a
number of cases in order to build the methodology. There is
significant overlap between these categories, with most of the
differences confined to the A matrix. There are 4 categories
- functions where;

1) there with no zeros, M = 0.
2) the number of zeros is anything up to two less than

the number of poles, 0 < M ≤ N − 2.
3) the number of zeros is exactly one less than that of

poles, M = N − 1.
4) the number of zeros and poles is equal, M = N .
Matrix A will always be square and of size N×N , and it

follows that B will be a column of length N , C is a row of
length N , and D will have a single element. In all categories,
Matrix B will be constructed;

B =
[
k 0 0 . . . 0

]ᵀ
(7)

and in the cases where N = 1,

B =
[
k
]

(8)

Similarly, matrix C is a row of length N . For categories
1 and 2;

C =
[
0 . . . 0 0 1

]
(9)



and for category 3;

C =
[
1 . . . 1 1 1

]
(10)

For category 4, C is more complicated, and the details
will be explored further below;

C =
[∑N

i=1(pi − zi) . . .
∑N

i=N−1(pi − zi) pN − zN

]
(11)

Finally, D = 0 for categories 1-3 and D = k for
category 4. The example cases below will revisit each of
these categories.

B. The construction of A

The matrix A is always lower triangular, and constructed
by placing the poles (p1 to pN ) on the main diagonal of a
square matrix. For the case of no zeros, 1’s are placed on the
subdiagonal, one place to the left of the main. For example;

A =



p1 0 0 0 . . . 0
1 p2 0 0
0 1 p3 0
0 0 1 p4
...

. . . . . . 0
0 . . . 0 1 pN


(12)

Where the full state-space would be;

[
A B
C D

]
=



p1 0 0 0 . . . 0 k
1 p2 0 0 0
0 1 p3 0 0
0 0 1 p4 0
...

. . . . . . 0 0
0 . . . 0 1 pN 0
0 . . . 0 0 1 0


(13)

This would represent the transfer function;

Y (s) =
1

N∏
j=1

(s− pi)

.kU(s) (14)

This particular form is already well known, and represents
the complete set of functions from category 1 from the
overview. It is trivial to prove so not considered further.

We next consider simply M = 1, with the zero z1. The
zero is placed in A on the second row under the first pole,
as the pole-zero difference (p2-z1). Additionally, the third
row (the M + 2th row) will now have 1’s up until the main
diagonal;

A =



p1 0 0 0 . . . 0
p2 − z1 p2 0 0

1 1 p3 0
0 0 1 p4
...

. . . . . . 0
0 . . . 0 1 pN


(15)

For a second zero, z2, the pattern continues, but now there
are two columns with the pole-zero difference (p3-z2). Again,
the M + 2th row will have 1’s up until the main diagonal;

A =



p1 0 0 0 . . . 0
p2 − z1 p2 0 0
p3 − z2 p3 − z2 p3 0

1 1 1 p4
...

. . . . . . 0
0 . . . 0 1 pN


(16)

So, for each subsequent zero up to zM , the rows are
constructed as;

A =



p1
p2 − z1 p2

...
. . .

[− AM+1 −]
1 . . . 1 1 pM+2

0 . . . 0 1 pM+3

...
. . .

0 . . . 0 1 pN


(17)

where the AM+1 row;

AM =
[
pM+1 − zM . . . pM+1 − zM pM+1 0 . . . 0

]
This pattern continues for all category 2 cases (up to M =

N − 2), where the final realization is mostly the same but
with no 0’s left beneath the diagonal;

A =



p1
p2 − z1 p2
p3 − z2 p3 − z2 p3

...
. . .

pN−1 − zM . . . pN−1 − zM pN−1

1 . . . 1 1 pN


(18)

However, for category 3 where M = N − 1, there is no
room for the row of 1’s, so;

A =


p1

p2 − z1 p2
p3 − z2 p3 − z2 p3

...
. . .

pN − zM . . . pN − zM pN

 (19)

And this is why the row of 1’s is shifted to C, as discussed
above. Now, C is effectively M + 2th row which is an
important row to consider when constructing the proof.

C. The construction of A, C and D for category 4

For the case where M = N , matrix A is unchanged from
that shown for category 3 (See equation 19) and matrix D
must be nonzero and will always be D = k. For matrix C,
each element of the row will now be a summation of pole-
zero differences. Be aware that these are slightly different to



the pole-zero differences in A. By way of example, consider
the case of N = M = 1;[

A B
C D

]
=

[
p1 k

p1 − z1 k

]
(20)

For each ith additional pole and zero, C expands by 1
column, and pi − zi is added to each element. For instance,
for N = M = 2;

[
A B
C D

]
=

 p1 0 k
p2 − z1 p2 0

p1 − z1 + p2 − z2 p2 − z2 k

 (21)

or in general, for a function of N poles and zeros;

C =
[∑N

i=1(pi − zi) . . .
∑N

i=N−1(pi − zi) pN − zN

]
(22)

For visual clarity as used in the Appendices, we can
introduce the term ∆ji where ∆ = pj − zi. With this,
the equations above 20, 21 and 22 could be rewritten,
respectively, as;

[
A B
C D

]
=

[
p1 k

∆11 k

]
(23)

[
A B
C D

]
=

 p1 0 k
∆21 p2 0

∆11 + ∆22 ∆22 k

 (24)

C =

[
N∑
i=1

∆ii . . .

N∑
i=N−1

∆ii ∆NN

]
(25)

We need to inspect the individual pj and zi in order to
prove these solutions, so the use of ∆ji will not be included
below, but it may be useful for the reader outside of this
paper.

IV. SOLVING THE LAPLACIAN

The problem with finding the general solution to these
realizations is that the edge cases don’t always fit neatly into
the regular algebraic patterns. It is easier to work through a
number of examples in order to familiarize oneself with the
manipulations. These following examples will cover cases
from Category 2, then 3 and then 4.

Consider solving the family of differential equations that
come from the state-space constructed using Equation 17,

such that M >> 0, and N >> M .

ẋ1 = p1x1 + ku

ẋ2 = (p2 − z1)x1 + p2x2
ẋ3 = (p3 − z2)[x1 + x2] + p3x3

...
ẋM+1 = (pM+1 − zM )[x1 + . . . + xM ] + pM+1xM+1

ẋM+2 = [x1 + . . . + xM ] + pM+2xM+2

ẋM+3 = xM+2 + pM+3xM+3

...
ẋN = xN−1 + pNxN

y = xN

(26)

If we take the Laplace transform of each equation, we get;

X1s = p1X1 + kU

X2s = (p2 − z1)X1 + p2X2

X3s = (p3 − z2)[X1 + X2] + p3X3

...
XM+1s = (pM+1 − zM )[X1 + . . . + XM ] + pM+1XM+1

XM+2s = [X1 + . . . + XM+1] + pM+2XM+2

XM+3s = XM+2 + pM+3XM+3

...
XNs = XN−1 + pNXN

Y = XN

(27)

Each equation can then be rearranged to give a specific
row by row solution;

X1 =
1

(s− p1)
kU

X2 =
(p2 − z1)[X1]

(s− p2)

X3 =
(p3 − z2)[X1 + X2]

(s− p3)

...

XM+1 =
(pM+1 − zM )[X1 + . . . + XM ]

(s− pM+1)

XM+2 =
[X1 + . . . + XM+1]

(s− pM+2)

XM+3 =
XM+2

(s− pM+3)

...

XN =
XN−1

(s− pN )

Y = XN

(28)

We contend that this will eventually lead back to the
regular pole-zero form shown in Equation 5. However, to



prove this, we should consider a few simple cases before
exploring the full argument, because the patterns are not
straightforward.

Case 1, 2 poles, 1 zero

Firstly, let N = 2 and M = 1. Because M = N − 1,
C = [11], In this case, the family of N + 1 = 3 equations
will be simply;

X1 =
1

(s− p1)
kU

X2 =
(p2 − z1)[X1]

(s− p2)

Y = X2 + X1

(29)

Firstly, substituting X1 into X2;

X2 =
(p2 − z1)

(s− p2)(s− p1)
kU (30)

Then Y can be solved easily by substitution;

Y =
(p2 − z1)

(s− p2)(s− p1)
kU +

1

(s− p1)
kU (31)

Cross multiply for a common denominator;

Y =
(p2 − z1)

(s− p2)(s− p1)
kU +

(s− p2)

(s− p2)(s− p1)
kU (32)

Simplify the numerator;

Y =
(p2 − z1) + (s− p2)

(s− p2)(s− p1)
kU (33)

Y =
(s− z1)

(s− p2)(s− p1)
kU (34)

This solution matches the form given in equation 5, and
thus works as a proof of that case. What we would like
to show is that the poles in the numerator will disappear
no matter how many equations. We can show that this
cancellation will always occur in the equation for XM+2

(except in the case where M = N − 1, which is shown in
Section IV, and the case M = N , shown in Section IV).

Case 2, 5 poles, 1 zero

Consider a second simple case, where N = 5, M = 1,
thus C = [00001];

X1 =
1

(s− p1)
kU

X2 =
(p2 − z1)[X1]

(s− p2)

X3 =
[X1 + X2]

(s− p3)

X4 =
X3

(s− p4)

X5 =
X4

(s− p5)

Y = X5

(35)

There are still N + 1 equations. However, this time note
that the last equation to introduce a new zero term is equation

M + 1, and the summation of previous substitutions is in
equation for XM+2 (i.e. the equation for X3). The square
brackets of this term will be the same as the final solution
in Equation 34 (Section IV), and therefore;

X3 =
1

(s− p3)

(s− z1)

(s− p2)(s− p1)
kU

X4 =
X3

(s− p4)

X5 =
X3

(s− p5)

Y = X5

(36)

It is trivial to do the substitutions for each line and show
that the final solution is

Y =
(s− z1)

(s− p5)(s− p4)(s− p3)(s− p2)(s− p1)
kU (37)

Which can be written as;

Y =
(s− z1)∏5
i=1(s− pi)

kU (38)

Once again the solution is in the target form of equation 5.
It can also be observed that increasing the number of poles,
and thus the number of equations, through N will not make
the final substitution any more complicated. Thus, we need
to ensure that the first M + 2 equations can produce the
correct numerator for the final solution.

Case 3, 5 poles, 3 zeros

Consider the third example case in order to note the pattern
of the development of the numerator of XM+2. Consider
N = 5, M = 3, thus C = [00001];

X1 =
1

(s− p1)
kU

X2 =
(p2 − z1)

(s− p2)
[X1]

X3 =
(p3 − z2)

(s− p3)
[X1 + X2]

X4 =
(p4 − z3)

(s− p4)
[X1 + X2 + X3]

X5 =
1

(s− p5)
[X1 + X2 + X3 + X4]

Y = X5

(39)

Taking what we know from previous examples, X2 sim-
plifies to;

X2 =
(p2 − z1)

(s− p2)(s− p1)
kU (40)

We know [X1 + X2] from Equation 34, thus X3;

X3 =
(p3 − z2)

(s− p3)
[

(s− z1)

(s− p2)(s− p1)
kU ] (41)

X3 =
(p3 − z2)(s− z1)

(s− p2)(s− p1)(s− p3)
kU (42)



Consider X4;

X4 =
(p4 − z3)

(s− p4)
×
[ 1

(s− p1)
kU+

(p2 − z1)

(s− p2)(s− p1)
kU+

(p3 − z2)(s− z1)

(s− p2)(s− p1)(s− p3)
kU
] (43)

Create the common denominator of the square brackets;

X4 =
(p4 − z3)

(s− p4)
×
[ (s− p3)(s− p2)

(s− p3)(s− p2)(s− p1)
kU+

(s− p3)(p2 − z1)

(s− p3)(s− p2)(s− p1)
kU+

(p3 − z2)(s− z1)

(s− p2)(s− p1)(s− p3)
kU
] (44)

Factorise;

X4 =
(p4 − z3)∏4
j=1(s− pj)

kU ×
[
(s− p3)(s− p2)+

(s− p3)(p2 − z1) + (p3 − z2)(s− z1)
] (45)

Simplifying the square brackets is trivial, but we are
interested in establishing a pattern to solve the general
case. Consider that there are three terms within the square
brackets. Notice that only the first two contain combinations
of p2. We can eliminate that first. Start by expanding only
the brackets that contain p2;[

(s− p3)s− (s− p3)p2 + (s− p3)p2 − (s− p3)z1+

(p3 − z2)(s− z1)
] (46)

All of the p2 terms cancel, and the remaining (s − p3)
terms can factorise;[

(s− p3)(s− z1) + (p3 − z2)(s− z1)
]

(47)

Repeating the process by expanded the brackets containing
p3, cancelling, and refactorising, the square brackets reduce
to; [

(s− z2)(s− z1)
]

(48)

And therefore;

X4 =
(p4 − z3)(s− z2)(s− z1)∏4

j=1(s− pj)
kU (49)

In this case, we are most interested in the equation for
X5, which is the XM+2 equation. If we write in out in full,
finding the common denominator of the square brackets as
we did above, we get;

X5 =
1∏5

j=1(s− pj)
kU × ...[

(s− p3)(s− p2)(s− p1)+

(p2 − z1)(s− p4)(s− p3)+

(p3 − z2)(s− p4)(s− z1)+

(p4 − z3)(s− z2)(s− z1)
]

(50)

From this step, we can simplify the square brackets
by expanding, cancelling, and refactorising as we did in
Equations 46 and 47. This would give us the final solution
in the form;

Y =

∏3
i=1(s− zi)∏5
j=1(s− pi)

.kU (51)

More importantly,we can observe that finally a pattern is
emerging for finding a general equation for XM+2.

Case 4, N poles, M zeroes, where M < N − 1

Using equation 50 as a base, we can generalise the
equation for XM+2 to;

XM+2 =
kU∏M+2

j=1 (s− pj)
×
[M+1∏

i=2

(s− pi)+

(p2 − z1)

M+1∏
i=3

(s− pi)+

(p3 − z2)

M+1∏
i=4

(s− pi).(s− z1)+

(p4 − z3)

M+1∏
i=5

(s− pi).

2∏
i=1

(s− zi) + . . .+

(pM − zM−1)(s− pM+1).

M−2∏
i=1

(s− zi)+

(pM+1 − zM )

M−1∏
i=1

(s− zi)
]

(52)

We can simplify the square brackets using the techniques
used in Equations 46 and 47 above. As an example, consider
just the first two terms;[M+1∏

i=2

(s− pi) + (p2 − z1)

M+1∏
i=3

(s− pi) + . . .
]

(53)

And rearrange the first term to show (s− p2) explicitly;[
(s− p2)

M+1∏
i=3

(s− pi) + (p2 − z1)

M+1∏
i=3

(s− pi) + . . .
]
(54)

Expand the brackets containing p2;[
(s)

M+1∏
i=3

(s− pi)− (p2)

M+1∏
i=3

(s− pi)+

(p2)

M+1∏
i=3

(s− pi)− (z1)

M+1∏
i=3

(s− pi) + . . .
] (55)

All the terms with p2 cancel, and the rest of the terms can
be factorised; [M+1∏

i=3

(s− pi).(s− z1) + . . .
]

(56)



If we factor out the term (s− p3), and consider one more
term from within the continuation, we get;

[
(s− p3)

M+1∏
i=4

(s− pi).(s− z1)+

(p3 − z2)

M+1∏
i=4

(s− pi).(s− z1) + . . .
] (57)

This is similar to what we see in Equation 54, and thus
we can repeat the steps leading up all the way to the final
two;[

(s− pM+1)

M−1∏
i=1

(s− zi) + (pM+1 − zM )

M−1∏
i=1

(s− zi)
]

(58)

Which expands and reduces to

M∏
i=1

(s− zi) (59)

Finally, consider the full equation for XM+2;

XM+2 =

∏M
i=1(s− zi)∏M+2
j=1 (s− pj)

kU (60)

Further terms, such that;

XM+2 =

∏M
i=1(s− zi)∏M+2
j=1 (s− pj)

kU

XM+3 =
XM+2

(s− pM+3)

...

XN =
XN−1

(s− pN )

Y = XN

(61)

or, in the case that M = N − 2, then;

Y = XM+2 = XN (62)

Either way, the solution is trivially;

Y =

∏M
i=1(s− zi)∏N
j=1(s− pi)

kU(s) (63)

Case 5, N poles, M zeroes, where M = N − 1

For category 3 functions, which is slightly different from
the above but follows much the same logic. Consider that
we solve all but the final 2 equations in the Laplace system
of equations;

XN =
(pN − zN−1)

(s− pN )
[X1 + X2 + . . . + XN−1]

Y = [X1 + X2 + . . . + XN ]

(64)

Following the patterns we explored previously; the solu-
tion to this set of equations is;

Y =
kU∏N

j=1(s− pj)
×
[ N∏
i=2

(s− pi)+

(p2 − z1)

N∏
i=3

(s− pi)+

(p3 − z2)

N∏
i=4

(s− pi).(s− z1)+

(p4 − z3)

N∏
i=5

(s− pi).

2∏
i=1

(s− zi) + . . .+

(pN−1 − zN−2)(s− pN ).

N−3∏
i=1

(s− zi)+

(pN − zN−1)

N−2∏
i=1

(s− zi)
]

(65)

There is one less term in the denominator then previously
expected, because there is no denominator for Y . The square
brackets simply reduce down to;

Y =
kU∏N

j=1(s− pj)
×
[N−1∏

i=1

(s− zi)
]

(66)

Which is equivalent to

Y =

∏M
i=1(s− zi)∏N
j=1(s− pi)

kU(s) (67)

Case 6, N poles, M zeroes, where M = N

The final case, adds a level of complexity to the algebraic
operations, but the result is very similar. Again, consider all
but the final 2 equations in the Laplace system of equations
as above, but before we have inserted the correct formulation
of C and D;

XN =
(pN − zN−1)

(s− pN )
[X1 + X2 + . . . + XN−1]

Y = [C1X1 + C2X2 + . . . + CNXN ] + DU

(68)

The formula for Y is similar to Case 5, but with a single
additional term D = k. Start by rearranging the D to the
front, and substituting in all the components of C (also note,
for clarity, more elements are shown and the C terms are in
angle brackets “〈〉”);

Y = kU + X1

〈 N∑
i=1

(pi − zi)
〉

+ X2

〈 N∑
i=2

(pi − zi)
〉

+

X3

〈 N∑
i=3

(pi − zi)
〉

+ X4

〈 N∑
i=4

(pi − zi)
〉

+ . . .+

XN−1

〈 N∑
i=N−1

(pi − zi)
〉

+ XN

〈
pN − zN )

〉
(69)



Now substitute in the solutions for all Xi, recognise there
is a common factor kU , and multiply through to create the
common denominator; Y =

kU∏N
j=1(s− pj)

×
[ N∏
i=1

(s− pi)+

N∏
i=2

(s− pi)
〈 N∑

i=1

(pi − zi)
〉

+

(p2 − z1)

N∏
i=3

(s− pi)
〈 N∑

i=2

(pi − zi)
〉

+

(p3 − z2)

N∏
i=4

(s− pi).(s− z1)
〈 N∑

i=3

(pi − zi)
〉

+

(p4 − z3)

N∏
i=5

(s− pi).

2∏
i=1

(s− zi)
〈 N∑

i=4

(pi − zi)
〉

+ . . .+

(pN−1 − zN−2)(s− pN ).
N−3∏
i=1

(s− zi)
〈 N∑

i=N−1

(pi − zi)
〉

+

(pN − zN−1)

N−2∏
i=1

(s− zi)
〈
pN − zN

〉]
(70)

The order of algebraic operations to eliminate all the p
terms inside the square brackets is similar to above, with
one additional step after each operation. From the first two
terms we can expand all the p1 to;

[
(s)

N∏
i=2

(s− pi)− (p1)

N∏
i=2

(s− pi)+

(p1)

N∏
i=2

(s− pi)− (z1)

N∏
i=2

(s− pi)+

N∏
i=2

(s− pi)
〈 N∑

i=2

(pi − zi)
〉
. . .
]

(71)

This reduces to

[
(s− z1)

N∏
i=2

(s− pi)+

N∏
i=2

(s− pi)
〈 N∑

i=2

(pi − zi)
〉
. . .
] (72)

This represents the new first and second terms of the
square brackets. Eliminating p2 is done in two steps, as does
the rest of the p terms. Consider the second and third term
of the square brackets, with (s− p2) brought to the front ;

[
. . . (s− p2)

N∏
i=3

(s− pi)
〈 N∑

i=2

(pi − zi)
〉

+

(p2 − z1)

N∏
i=3

(s− pi)
〈 N∑

i=2

(pi − zi)
〉
. . .
] (73)

We can expand the foremost brackets for p2, which then
cancel, and these terms simplify to;[

. . . (s− z1)

N∏
i=3

(s− pi)
〈 N∑

i=2

(pi − zi)
〉
. . .
]

(74)

And now we can compare this with the first term[
(s− z1)

N∏
i=2

(s− pi)+

(s− z1)

N∏
i=3

(s− pi)
〈 N∑

i=2

(pi − zi)
〉
. . .
] (75)

Expand for the remaining p2 terms, and z2 terms in the
angle brackets;[

(s)(s− z1)

N∏
i=3

(s− pi)− (p2)(s− z1)

N∏
i=3

(s− pi)+

(p2)(s− z1)

N∏
i=3

(s− pi)− (z2)(s− z1)

N∏
i=3

(s− pi)+

(s− z1)

N∏
i=3

(s− pi)
〈 N∑

i=3

(pi − zi)
〉
. . .
]

(76)

All the p2 can now be eliminated;[ 2∏
i=1

(s− zi)

N∏
i=3

(s− pi)+

(s− z1)

N∏
i=3

(s− pi)
〈 N∑

i=3

(pi − zi)
〉
. . .
] (77)

This two step pattern of eliminating p terms can be
repeated until all of them are eliminated, resulting in the
square brackets equal to;

[ N∏
i=1

(s− zi)
]

(78)

And thus it is finally found that

Y =

∏N
i=1(s− zi)∏N
j=1(s− pj)

kU(s) (79)
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APPENDIX

A. Simple Reference Examples

Here the reader can find examples of the conversion for some simple cases, as a quick reference tool.

1 Pole, 0 Zeros
Y (s)

U(s)
=

1

(s− p1)
k

[
A B
C D

]
=

[
p1 k
1 0

]

1 Pole, 1 Zero
Y (s)

U(s)
=

(s− z1)

(s− p1)
k

[
A B
C D

]
=

[
p1 k

p1 − z1 k

]

2 Poles, 0 Zeros
Y (s)

U(s)
=

1

(s− p1)(s− p2)
k

[
A B
C D

]
=

p1 0 k
1 p2 0
0 1 0



2 Poles, 1 Zero
Y (s)

U(s)
=

(s− z1)

(s− p1)(s− p2)
k

[
A B
C D

]
=

 p1 0 k
p2 − z1 p2 0

1 1 0



2 Poles, 2 Zeros
Y (s)

U(s)
=

(s− z1)(s− z2)

(s− p1)(s− p2)
k

[
A B
C D

]
=

 p1 0 k
p2 − z1 p2 0∑2

i=1(pi − zi) p2 − z2 k



3 Poles, 0 Zeros
Y (s)

U(s)
=

1

(s− p1)(s− p2)(s− p3)
k

[
A B
C D

]
=


p1 0 0 k
1 p2 0 0
0 1 p3 0
0 0 1 0



3 Poles, 1 Zeros
Y (s)

U(s)
=

(s− z1)

(s− p1)(s− p2)(s− p3)
k

[
A B
C D

]
=


p1 0 0 k

p2 − z1 p2 0 0
1 1 p3 0
0 0 1 0



3 Poles, 2 Zeros
Y (s)

U(s)
=

(s− z1)(s− z2)

(s− p1)(s− p2)(s− p3)
k

[
A B
C D

]
=


p1 0 0 k

p2 − z1 p2 0 0
p3 − z2 p3 − z2 p3 0

1 1 1 0



3 Poles, 3 Zeros
Y (s)

U(s)
=

(s− z1)(s− z2)(s− z3)

(s− p1)(s− p2)(s− p3)
k

[
A B
C D

]
=


p1 0 0 k

p2 − z1 p2 0 0
p3 − z2 p3 − z2 p3 0∑3

i=1(pi − zi)
∑3

i=2(pi − zi) p3 − z3 k





B. SISO Transfer Functions with n poles and n− 1 zeros
Y (s)

U(s)
=

b1s
n−1 + . . . + bn−1s + bn

sn + a1sn−1 + . . . + an−1s + an

Controllable Canonical Form:

A =


0 1 0 0
...

. . .
...

0 0 1 0
0 0 . . . 0 1
−an −an−1 . . . −a2 −a1

 B =


0
...
0
0
1


C =

[
bn bn−1 . . . b2 b1

]
D =

[
0
]

Observable Canonical Form:

A =


0 . . . 0 0 −an
1 0 0 −an−1

. . .
...

...
0 1 0 −a2
0 . . . 0 1 −a1

 B =


bn

bn−1

...
b2
b1


C =

[
0 . . . 0 0 1

]
D =

[
0
]

Diagonal Canonical Form: Factorize denominator, compute partial fractions;

Y (s)

U(s)
=

b1s
n−1 + . . . + bn−1s + bn

(s− p1)(s− p2)...(s− pn)

=
r1

(s− p1)
+

r2
(s− p2)

+ ... +
rn

(s− pn)

A =


p1 0 . . . 0 0
0 p2 0 0
...

. . .
...

0 0 pn−1 0
0 0 . . . 0 pn

 B =


r1
r2
...

rn−1

rn


C =

[
1 1 . . . 1 1

]
D =

[
0
]

Pole-Zero Difference Form: Factorize the numerator and denominator;

Y (s)

U(s)
=

(s− z1)(s− z2)...(s− zn−1)

(s− p1)(s− p2)...(s− pn)
k

A =


p1 0 0 0

∆21 p2 0 . . . 0
∆32 ∆32 p3 0

...
. . .

∆n,n−1 ∆n,n−1 ∆n,n−1 . . . pn

 B =


k
0
...
0
0


C =

[
1 1 1 . . . 1

]
D =

[
0
]

where ∆ji = pj − zi



C. SISO Transfer Functions with n poles and n zeros

Y (s)

U(s)
=

b0s
n + b1s

n−1 + . . . + bn−1s + bn
sn + a1sn−1 + . . . + an−1s + an

Controllable Canonical Form:

A =


0 1 0 0
...

. . .
...

0 0 1 0
0 0 . . . 0 1
−an −an−1 . . . −a2 −a1

 B =


0
...
0
0
1


C =

[
(bn − anb0) (bn−1 − an−1b0) . . . (b2 − a2b0) (b1 − a1b0)

]
D =

[
b0
]

Observable Canonical Form:

A =


0 . . . 0 0 −an
1 0 0 −an−1

. . .
...

...
0 1 0 −a2
0 . . . 0 1 −a1

 B =


bn − anb0

bn−1 − an−1b0
...

b2 − a2b0
b1 − a1b0


C =

[
0 . . . 0 0 1

]
D =

[
b0
]

Diagonal Canonical Form: Factorize denominator, compute partial fractions;

Y (s)

U(s)
=

b0s
n + b1s

n−1 + . . . + bn−1s + bn
(s− p1)(s− p2)...(s− pn)

= b0 +
r1

(s− p1)
+

r2
(s− p2)

+ ... +
rn

(s− pn)

A =


p1 0 . . . 0 0
0 p2 0 0
...

. . .
...

0 0 pn−1 0
0 0 . . . 0 pn

 B =


r1
r2
...

rn−1

rn


C =

[
1 1 . . . 1 1

]
D =

[
b0
]

Pole-Zero Difference Form: Factorize the numerator and denominator;

Y (s)

U(s)
=

(s− z1)(s− z2)...(s− zn)

(s− p1)(s− p2)...(s− pn)
k

A =


p1 0 0 0

∆21 p2 0 . . . 0
∆32 ∆32 p3 0

...
. . .

∆n,n−1 ∆n,n−1 ∆n,n−1 . . . pn

 B =


k
0
...
0
0


C =

[
(
∑n

i=1 ∆ii) (
∑n

i=2 ∆ii) . . . (∆n−1,n−1 + ∆nn) (∆nn)
]

D =
[
k
]

where ∆ji = pj − zi
Note: An alternative description of the elements of C, is that they are the sum of the elements in A from the
same column minus the final zero zn.



D. Matlab Script for Proof by Example
The following script constructs the matrices A,B,C,D per the Pole-Zero-Difference Form using randomly
assigned values of p, z, k. It then compares the results for the transfer-function and state-space using Matlab’s
Control System Toolbox.

N = 10; M = 10; k = rand(1);
p = -sort(rand(1,N),'descend'); z = sort(rand(1,M)-0.5,'descend');

B = [k;zeros(N-1,1)]; C = ones(1,N); D = 0;

Atril = diag(ones(N-1,1),-1);
for i = 1:min(M,N-1)

Atril(i+1,:) = p(i+1)-z(i);
end
if M<N-1

Atril(M+2,:)=1; C = [zeros(1,N-1),1];
end
A = diag(p) + tril(Atril,-1);
if M==N

C = sum(A)-z(end); D = k;
end

func1 = zpk(z,p,k); step(func1,'b'); hold on
func2 = ss(A,B,C,D); step(func2,'r--');

zcalc = eig([A B;C D],diag([ones(1,length(p)) 0]));
zind = find(isinf(zcalc)); zcalc(zind)=[];
disp('Zeros input vs calculated;')
disp([z' sort(zcalc,'descend')])


